Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Georgian Med News ; (336): 73-78, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2318302

ABSTRACT

The influence of gut microbiomes on health has been gaining significance lately. More emphasis is their role in neurological illnesses as several of the metabolites and factors produced by the gut affect the brain via the gut-brain axis. Among all the gut microbiome produced metabolites, butyrate has been considered the most significant. Externally supplemented butyrate though has health benefits, when evaluated thoroughly, it is understood that there have been different pathways involved in the production of butyrate by the gut microbiome with the produced butyrate even being detrimental, though majority are beneficial. Importantly maternal butyrate supplementation has resulted in detrimental effects in the offspring. In this background, a black yeast Aureobasidium pullulans produced biological response modifier beta glucans (BRMGs) has shown beneficial outcome (anti-inflammatory: decrease in IL-6, Ferritin, C-reactive protein in COVID-19, D-Dimer; anti-fibrotic in fatty liver disease; improvement of behaviour and sleep with increase in α-synuclein, melatonin in autism) along with its effect on increasing the butyrate producing bacteria in the gut. Since only advantageous outcome has been reported with this BRMG produced butyrate, it is worth being considered as a yardstick for evaluation of exogenously supplemented and endogenous produced butyrate for their differential effects on host and its offspring.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Butyrates/metabolism , Gastrointestinal Microbiome/physiology , Epithelial Cells/metabolism , Homeostasis
2.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: covidwho-2316694

ABSTRACT

Hypoxia-inducible factor-1α (HIF-1α), a central player in maintaining gut-microbiota homeostasis, plays a pivotal role in inducing adaptive mechanisms to hypoxia and is negatively regulated by prolyl hydroxylase 2 (PHD2). HIF-1α is stabilized through PI3K/AKT signaling regardless of oxygen levels. Considering the crucial role of the HIF pathway in intestinal mucosal physiology and its relationships with gut microbiota, this study aimed to evaluate the ability of the lysate from the multi-strain probiotic formulation SLAB51 to affect the HIF pathway in a model of in vitro human intestinal epithelium (intestinal epithelial cells, IECs) and to protect from lipopolysaccharide (LPS) challenge. The exposure of IECs to SLAB51 lysate under normoxic conditions led to a dose-dependent increase in HIF-1α protein levels, which was associated with higher glycolytic metabolism and L-lactate production. Probiotic lysate significantly reduced PHD2 levels and HIF-1α hydroxylation, thus leading to HIF-1α stabilization. The ability of SLAB51 lysate to increase HIF-1α levels was also associated with the activation of the PI3K/AKT pathway and with the inhibition of NF-κB, nitric oxide synthase 2 (NOS2), and IL-1ß increase elicited by LPS treatment. Our results suggest that the probiotic treatment, by stabilizing HIF-1α, can protect from an LPS-induced inflammatory response through a mechanism involving PI3K/AKT signaling.


Subject(s)
Lipopolysaccharides , Proto-Oncogene Proteins c-akt , Humans , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Caco-2 Cells , Phosphatidylinositol 3-Kinases/metabolism , Hypoxia/metabolism , Epithelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
3.
Viruses ; 14(1)2021 12 21.
Article in English | MEDLINE | ID: covidwho-2308229

ABSTRACT

Different serological assays were rapidly generated to study humoral responses against the SARS-CoV-2 Spike glycoprotein. Due to the intrinsic difficulty of working with SARS-CoV-2 authentic virus, most serological assays use recombinant forms of the Spike glycoprotein or its receptor binding domain (RBD). Cell-based assays expressing different forms of the Spike, as well as pseudoviral assays, are also widely used. To evaluate whether these assays recapitulate findings generated when the Spike is expressed in its physiological context (at the surface of the infected primary cells), we developed an intracellular staining against the SARS-CoV-2 nucleocapsid (N) to distinguish infected from uninfected cells. Human airway epithelial cells (pAECs) were infected with authentic SARS-CoV-2 D614G or Alpha variants. We observed robust cell-surface expression of the SARS-CoV-2 Spike at the surface of the infected pAECs using the conformational-independent anti-S2 CV3-25 antibody. The infected cells were also readily recognized by plasma from convalescent and vaccinated individuals and correlated with several serological assays. This suggests that the antigenicity of the Spike present at the surface of the infected primary cells is maintained in serological assays involving expression of the native full-length Spike.


Subject(s)
Cell Membrane/metabolism , Epithelial Cells/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Bronchioles/cytology , Cells, Cultured , Coronavirus Nucleocapsid Proteins/metabolism , Epithelial Cells/virology , HEK293 Cells , Humans , Neutralization Tests , Phosphoproteins/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
4.
Eur J Cell Biol ; 102(2): 151316, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2300043

ABSTRACT

The expression of the angiotensin-converting enzyme 2 (ACE2) is altered in multiple chronic kidney diseases like hypertension and renal fibrosis, where the signaling from the basal membrane proteins is critical for the development and progression of the various pathologies. Integrins are heterodimeric cell surface receptors that have important roles in the progression of these chronic kidney diseases by altering various cell signaling pathways in response to changes in the basement membrane proteins. It is unclear whether integrin or integrin-mediated signaling affects the ACE2 expression in the kidney. The current study tests the hypothesis that integrin ß1 regulates the expression of ACE2 in kidney epithelial cells. The role of integrin ß1 in ACE2 expression in renal epithelial cells was investigated by shRNA-mediated knockdown and pharmacological inhibition. In vivo studies were carried out using epithelial cell-specific deletion of integrin ß1 in the kidneys. Deletion of integrin ß1 from the mouse renal epithelial cells reduced the expression of ACE2 in the kidney. Furthermore, the downregulation of integrin ß1 using shRNA decreased ACE2 expression in human renal epithelial cells. ACE2 expression levels were also decreased in renal epithelial cells and cancer cells when treated with an integrin α2ß1 antagonist, BTT 3033. SARS-CoV-2 viral entry to human renal epithelial cells and cancer cells was also inhibited by BTT 3033. This study demonstrates that integrin ß1 positively regulates the expression of ACE2, which is required for the entry of SARS-CoV-2 into kidney cells.


Subject(s)
COVID-19 , Renal Insufficiency, Chronic , Humans , Animals , Mice , Integrin beta1/genetics , Integrin beta1/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/metabolism , COVID-19/metabolism , COVID-19/pathology , Kidney/metabolism , Kidney/pathology , Epithelial Cells/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
5.
Physiol Rep ; 11(7): e15592, 2023 04.
Article in English | MEDLINE | ID: covidwho-2302852

ABSTRACT

Using the 16HBE 14o- human airway epithelial cell culture model, calcitriol (Vitamin D) was shown to improve barrier function by two independent metrics - increased transepithelial electrical resistance (TER) and reduced transepithelial diffusion of 14 C-D-mannitol (Jm ). Both effects were concentration dependent and active out to 168 h post-treatment. Barrier improvement associated with changes in the abundance of specific tight junctional (TJ) proteins in detergent-soluble fractions, most notably decreased claudin-2. TNF-α-induced compromise of barrier function could be attenuated by calcitriol with a concentration dependence similar to that observed for improvement of control barrier function. TNF-α-induced increases in claudin-2 were partially reversed by calcitriol. The ERK 1,2 inhibitor, U0126, itself improved 16HBE barrier function indicating MAPK pathway regulation of 16HBE barrier function. Calcitriol's action was additive to the effect of U0126 in reducing TNF- α -induced barrier compromise, suggesting that calcitriol may be acting through a non-ERK pathway in its blunting of TNF- α - induced barrier compromise. This was supported by calcitriol being without effect on pERK levels elevated by the action of TNF-α. Lack of effect of TNF- α on the death marker, caspase-3, and the inability of calcitriol to decrease the elevated LC3B II level caused by TNF-α, suggest that calcitriol's barrier improvement does not involve a cell death pathway. Calcitriol's improvement of control barrier function was not additive to barrier improvement induced by retinoic acid (Vitamin A). Calcitriol improvement and protection of airway barrier function could in part explain Vitamin D's reported clinical efficacy in COVID-19 and other airway diseases.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Calcitriol/pharmacology , Calcitriol/metabolism , Claudin-2/metabolism , Tight Junctions/metabolism , COVID-19/metabolism , Epithelial Cells/metabolism , Lung/metabolism
6.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: covidwho-2295406

ABSTRACT

Obesity is known to increase the complications of the COVID-19 coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the exact mechanisms of SARS-CoV-2 infection in obese patients have not been clearly elucidated. This study aims to better understand the effect of obesity on the course of SARS-CoV-2 infection and identify candidate molecular pathways involved in the progression of the disease, using an in vitro live infection model and RNA sequencing. Results from this study revealed the enhancement of viral load and replication in bronchial epithelial cells (NHBE) from obese subjects at 24 h of infection (MOI = 0.5) as compared to non-obese subjects. Transcriptomic profiling via RNA-Seq highlighted the enrichment of lipid metabolism-related pathways along with LPIN2, an inflammasome regulator, as a unique differentially expressed gene (DEG) in infected bronchial epithelial cells from obese subjects. Such findings correlated with altered cytokine and angiotensin-converting enzyme-2 (ACE2) expression during infection of bronchial cells. These findings provide a novel insight on the molecular interplay between obesity and SARS-CoV-2 infection. In conclusion, this study demonstrates the increased SARS-CoV-2 infection of bronchial epithelial cells from obese subjects and highlights the impaired immunity which may explain the increased severity among obese COVID-19 patients.


Subject(s)
COVID-19 , Humans , COVID-19/complications , COVID-19/metabolism , SARS-CoV-2 , Lung/metabolism , Obesity/complications , Obesity/metabolism , Epithelial Cells/metabolism
7.
Sci Rep ; 13(1): 5807, 2023 04 10.
Article in English | MEDLINE | ID: covidwho-2301788

ABSTRACT

The relationship between the use of tobacco products and SARS-CoV-2 infection is poorly understood and controversial. Few studies have examined the effect of electronic cigarettes (ECs) on SARS-CoV-2 infection. We tested the hypothesis that EC fluids and aerosols with nicotine promote SARS-COV-2 infection by increasing viral entry into human respiratory epithelial cells. Responses of BEAS-2B cells to JUUL aerosols or their individual constituents were compared using three exposure platforms: submerged culture, air-liquid-interface (ALI) exposure in a cloud chamber, and ALI exposure in a Cultex system, which produces authentic heated EC aerosols. In general, nicotine and nicotine + propylene glycol/vegetable glycerin aerosols increased ACE2 (angiotensin converting enzyme 2) levels, the SARS-CoV-2 receptor; and increased the activity of TMPRSS2 (transmembrane serine protease 2), an enzyme essential for viral entry. Lentivirus pseudoparticles with spike protein were used to test viral penetration. Exposure to nicotine, EC fluids, or aerosols altered the infection machinery and increased viral entry into cells. While most data were in good agreement across the three exposure platforms, cells were more responsive to treatments when exposed at the ALI in the Cultex system, even though the exposures were brief and intermittent. While both nicotine and JUUL aerosols increased SARS-CoV-2 infection, JUUL significantly decreased the effect of nicotine alone. These data support the idea that vaping can increase the likelihood of contracting COVID-19 and that e-liquid composition may modulate this effect.


Subject(s)
COVID-19 , Electronic Nicotine Delivery Systems , Humans , Nicotine/pharmacology , Nicotine/metabolism , COVID-19/metabolism , SARS-CoV-2 , Respiratory Aerosols and Droplets , Epithelial Cells/metabolism
8.
Immun Inflamm Dis ; 11(3): e809, 2023 03.
Article in English | MEDLINE | ID: covidwho-2287510

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a severe and fatal respiratory disease. SIRT6 exerts pivotal activities in the process of lung diseases, but whether SIRT6 impacts ALI has not been covered. METHODS: Lentivirus recombinant expressing vector SIRT6 gene (Lent-SIRT6) was constructed in mice, and there were control, lipopolysaccharide (LPS), LPS + Vehicle, and LPS + Lent SIRT6 groups. RT-qPCR and western blot detected SIRT6 expression in lung tissues. HE staining observed pathological alternations in lung tissues. Wet-to-dry ratio of the lungs was then measured. The cell count of bronchoalveolar lavage fluid (BALF) was evaluated. Serum inflammation was examined with enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and western blot were to measure apoptosis. Western blot tested the expression of ACE2/STAT3/PIM1 signaling-associated factors. At the cellular level, LPS was used to induce lung epithelial cells BEAS-2B to establish cell injury models. SIRT6 was overexpressed and ACE2 expression was inhibited by cell transfection, and the mechanism of SIRT6 in LPS-induced lung injury model was further explored by Cell Counting Kit-8 (CCK-8), western blot, quantitative reverse-transcription polymerase chain reaction, TUNEL, and other techniques. RESULTS: The results of animal experiments showed that SIRT6 overexpression could reduce LPS-induced lung pathological injury, pulmonary edema, and BALF cell ratio and attenuate LPS-induced inflammatory response and cell apoptosis. In the above process, ACE2, STAT3, p-STAT3, and PIM1 expression were affected. In cell experiments, SIRT6 expression was reduced in LPS-induced BEAS-2B cells. Inhibition of ACE2 expression could reverse the inhibitory effect of SIRT6 overexpression on ACE2/STAT3/PIM1 pathway, and cellular inflammatory response and apoptosis. CONCLUSION: SIRT6 eased LPS-evoked inflammation and apoptosis of lung epithelial cells in ALI through ACE2/STAT3/PIM1 signaling.


Subject(s)
Acute Lung Injury , Sirtuins , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Apoptosis , Epithelial Cells/metabolism , Inflammation/genetics , Lipopolysaccharides/toxicity , Lung/pathology , Sirtuins/genetics , Sirtuins/metabolism
9.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2267330

ABSTRACT

A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.


Subject(s)
Alveolar Epithelial Cells , Clathrin , Mice , Animals , Alveolar Epithelial Cells/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Clathrin/metabolism , Lung/metabolism , Epithelial Cells/metabolism , Serum Albumin/metabolism , Pulmonary Alveoli/metabolism
10.
Int J Mol Sci ; 24(5)2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2279022

ABSTRACT

Culturing respiratory epithelial cells at an air-liquid interface (ALI) represents an established method for studies on infection or toxicology by the generation of an in vivo-like respiratory tract epithelial cellular layer. Although primary respiratory cells from a variety of animals have been cultured, an in-depth characterization of canine tracheal ALI cultures is lacking despite the fact that canines are a highly relevant animal species susceptible to various respiratory agents, including zoonotic pathogens such as severe acute respiratory coronavirus 2 (SARS-CoV-2). In this study, canine primary tracheal epithelial cells were cultured under ALI conditions for four weeks, and their development was characterized during the entire culture period. Light and electron microscopy were performed to evaluate cell morphology in correlation with the immunohistological expression profile. The formation of tight junctions was confirmed using transepithelial electrical resistance (TEER) measurements and immunofluorescence staining for the junctional protein ZO-1. After 21 days of culture at the ALI, a columnar epithelium containing basal, ciliated and goblet cells was seen, resembling native canine tracheal samples. However, cilia formation, goblet cell distribution and epithelial thickness differed significantly from the native tissue. Despite this limitation, tracheal ALI cultures could be used to investigate the pathomorphological interactions of canine respiratory diseases and zoonotic agents.


Subject(s)
Cell Culture Techniques , Epithelial Cells , Animals , Dogs , Cells, Cultured , Epithelial Cells/metabolism , Microscopy, Electron
11.
J Allergy Clin Immunol ; 152(1): 56-67, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2257484

ABSTRACT

BACKGROUND: Despite well-known susceptibilities to other respiratory viral infections, individuals with allergic asthma have shown reduced susceptibility to severe coronavirus disease 2019 (COVID-19). OBJECTIVE: We sought to identify mechanisms whereby type 2 inflammation in the airway protects against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by using bronchial airway epithelial cells (AECs) from aeroallergen-sensitized children with asthma and healthy nonsensitized children. METHODS: We measured SARS-CoV-2 replication and ACE2 protein and performed bulk and single-cell RNA sequencing of ex vivo infected AEC samples with SARS-CoV-2 infection and with or without IL-13 treatment. RESULTS: We observed that viral replication was lower in AECs from children with allergic asthma than those from in healthy nonsensitized children and that IL-13 treatment reduced viral replication only in children with allergic asthma and not in healthy children. Lower viral transcript levels were associated with a downregulation of functional pathways of the ciliated epithelium related to differentiation as well as cilia and axoneme production and function, rather than lower ACE2 expression or increases in goblet cells or mucus secretion pathways. Moreover, single-cell RNA sequencing identified specific subsets of relatively undifferentiated ciliated epithelium (which are common in allergic asthma and highly responsive to IL-13) that directly accounted for impaired viral replication. CONCLUSION: Our results identify a novel mechanism of innate protection against SARS-CoV-2 in allergic asthma that provides important molecular and clinical insights during the ongoing COVID-19 pandemic.


Subject(s)
Asthma , COVID-19 , Child , Humans , SARS-CoV-2 , Interleukin-13 , Pandemics , Asthma/epidemiology , Inflammation , Epithelial Cells/metabolism , Epithelium/metabolism
12.
Exp Lung Res ; 49(1): 72-85, 2023.
Article in English | MEDLINE | ID: covidwho-2257199

ABSTRACT

Purpose: Airway epithelial barrier leak and the involvement of proinflammatory cytokines play a key role in a variety of diseases. This study evaluates barrier compromise by the inflammatory mediator Tumor Necrosis Factor-α (TNF-α) in the human airway epithelial Calu-3 model. Methods: We examined the effects of TNF-α on barrier function in Calu-3 cell layers using Transepithelial Electrical Resistance (TER) and transepithelial diffusion of radiolabeled probe molecules. Western immunoblot analyses of tight junctional (TJ) proteins in detergent soluble fractions were performed. Results: TNF-α dramatically reduced TER and increased paracellular permeability of both 14C-D-mannitol and the larger 5 kDa probe, 14C-inulin. A time course of the effects shows two separate actions on barrier function. An initial compromise of barrier function occurs 2-4 hours after TNF-α exposure, followed by complete recovery of barrier function by 24 hrs. Beginning 48 hrs. post-exposure, a second more sustained barrier compromise ensues, in which leakiness persists through 144 hrs. There were no changes in TJ proteins observed at 3 hrs. post exposure, but significant increases in claudins-2, -3, -4, and -5, as well as a decrease in occludin were seen at 72 hrs. post TNF-α exposure. Both the 2-4 hr. and the 72 hr. TNF-α induced leaks are shown to be mediated by the ERK signaling pathway. Conclusion: TNF-α induced a multiphasic transepithelial leak in Calu-3 cell layers that was shown to be ERK mediated, as well as involve changes in the TJ complex. The micronutrients, retinoic acid and calcitriol, were effective at reducing this barrier compromise caused by TNF-α. The significance of these results for airway disease and for COVID-19 specifically are discussed.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tight Junctions/metabolism , COVID-19/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism
13.
PLoS One ; 18(2): e0280944, 2023.
Article in English | MEDLINE | ID: covidwho-2271344

ABSTRACT

Melioidosis is an infectious disease with high mortality rates in human, caused by the bacterium Burkholderia pseudomallei. As an intracellular pathogen, B. pseudomallei can escape from the phagosome and induce multinucleated giant cells (MNGCs) formation resulting in antibiotic resistance and immune evasion. A novel strategy to modulate host response against B. pseudomallei pathogenesis is required. In this study, an active metabolite of vitamin D3 (1α,25-dihydroxyvitamin D3 or 1α,25(OH)2D3) was selected to interrupt pathogenesis of B. pseudomallei in a human lung epithelium cell line, A549. The results demonstrated that pretreatment with 10-6 M 1α,25(OH)2D3 could reduce B. pseudomallei internalization to A549 cells at 4 h post infection (P < 0.05). Interestingly, the presence of 1α,25(OH)2D3 gradually reduced MNGC formation at 8, 10 and 12 h compared to that of the untreated cells (P < 0.05). Furthermore, pretreatment with 10-6 M 1α,25(OH)2D3 considerably increased hCAP-18/LL-37 mRNA expression (P < 0.001). Additionally, pro-inflammatory cytokines, including MIF, PAI-1, IL-18, CXCL1, CXCL12 and IL-8, were statistically decreased (P < 0.05) in 10-6 M 1α,25(OH)2D3-pretreated A549 cells by 12 h post-infection. Taken together, this study indicates that pretreatment with 10-6 M 1α,25(OH)2D3 has the potential to reduce the internalization of B. pseudomallei into host cells, decrease MNGC formation and modulate host response during B. pseudomallei infection by minimizing the excessive inflammatory response. Therefore, 1α,25(OH)2D3 supplement may provide an effective supportive treatment for melioidosis patients to combat B. pseudomallei infection and reduce inflammation in these patients.


Subject(s)
Melioidosis , Humans , Melioidosis/drug therapy , Vitamin D , Vitamins , Epithelial Cells/metabolism , Lung/metabolism , Giant Cells/metabolism , Dietary Supplements
14.
Front Immunol ; 13: 1037115, 2022.
Article in English | MEDLINE | ID: covidwho-2278618

ABSTRACT

Background: Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16's high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods: Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results: Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022; sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions: Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar-blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Sepsis , Humans , Biomarkers , Blood Proteins/metabolism , Case-Control Studies , Communicable Diseases/metabolism , Epithelial Cells/metabolism , Research Report , SARS-CoV-2 , Sepsis/metabolism , Uteroglobin/metabolism
15.
Eur J Pharm Biopharm ; 184: 62-82, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2235648

ABSTRACT

The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.


Subject(s)
Cell Culture Techniques , Respiratory Mucosa , Humans , Respiratory Mucosa/metabolism , Cell Line , Lung , Nasal Mucosa , Epithelial Cells/metabolism
16.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2232892

ABSTRACT

In early 2020, the novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, and rapidly propagated worldwide causing a global health emergency. SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) protein for cell entry, followed by proteolytic cleavage of the Spike (S) protein by the transmembrane serine protease 2 (TMPRSS2), allowing fusion of the viral and cellular membranes. Interestingly, TMPRSS2 is a key regulator in prostate cancer (PCa) progression which is regulated by androgen receptor (AR) signaling. Our hypothesis is that the AR signaling may regulate the expression of TMPRSS2 in human respiratory cells and thus influence the membrane fusion entry pathway of SARS-CoV-2. We show here that TMPRSS2 and AR are expressed in Calu-3 lung cells. In this cell line, TMPRSS2 expression is regulated by androgens. Finally, pre-treatment with anti-androgen drugs such as apalutamide significantly reduced SARS-CoV-2 entry and infection in Calu-3 lung cells but also in primary human nasal epithelial cells. Altogether, these data provide strong evidence to support the use of apalutamide as a treatment option for the PCa population vulnerable to severe COVID-19.


Subject(s)
COVID-19 , Male , Humans , COVID-19/metabolism , SARS-CoV-2/metabolism , Peptidyl-Dipeptidase A/metabolism , Lung/metabolism , Epithelial Cells/metabolism , Virus Internalization
17.
Pathog Glob Health ; 117(4): 401-408, 2023 06.
Article in English | MEDLINE | ID: covidwho-2187715

ABSTRACT

Aberrant activation of the immune system has been attributed with etiology and pathogenesis of coronavirus disease 2019 (COVID-19). Here, the transcript levels of toll-like receptors (TLRs) were measured in the nasopharyngeal epithelial cells obtained from COVID-19 patients to assess the involvement of these molecules in the clinical outcome of COVID-19 patients. Nasopharyngeal swab samples were used to obtain epithelial cells from 120 COVID-19 patients and 100 healthy controls. COVID-19 cases were classified into those having clinical symptoms/needing for hospitalization, having clinical symptoms/not needing for hospitalization, and those without clinical symptoms|. The mRNA expression levels of TLRs were measured in the nasopharyngeal epithelial cells. Overall, mRNA expression of TLR1, TLR2, TLR4, and TLR6 was significantly higher in COVID-19 cases compared to controls. The mRNA expression of TLRs were all higher significantly in the samples from COVID-19 patients having clinical symptoms and needing hospitalization as well as in those with clinical symptoms/not needing for hospitalization in comparison to controls. TLR expression was significantly higher in those with clinical symptoms/needing for hospitalization and those with clinical symptoms/not needing for hospitalization compared to COVID-19 cases without clinical symptoms. In cases with clinical symptoms/needing for hospitalization and those with clinical symptoms/not needing for hospitalization, there was a correlation between TLR expression and clinicopathological findings. In conclusion, aberrant expression of TLRs in the nasopharyngeal epithelial cells from COVID-19 cases may predict the severity of the diseases and necessity for supportive cares in the hospital.


Subject(s)
COVID-19 , Toll-Like Receptor 2 , Humans , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 1/genetics , Toll-Like Receptor 1/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Epithelial Cells/metabolism , Nasopharynx , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
J Extracell Vesicles ; 11(12): e12291, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2148344

ABSTRACT

The interaction of SARS-CoV-2 infection with extracellular vesicles (EVs) is of particular interest at the moment. Studying SARS-CoV-2 contaminated-EV isolates in instruments located outside of the biosafety level-3 (BSL-3) environment requires knowing how viral inactivation methods affect the structure and function of extracellular vesicles (EVs). Therefore, three common viral inactivation methods, ultraviolet-C (UVC; 1350 mJ/cm2 ), ß-propiolactone (BPL; 0.005%), heat (56°C, 45 min) were performed on defined EV particles and their proteins, RNAs, and function. Small EVs were isolated from the supernatant of SARS-CoV-2-infected human lung epithelial Calu-3 cells by stepwise centrifugation, ultrafiltration and qEV size-exclusion chromatography. The EV isolates contained SARS-CoV-2. UVC, BPL and heat completely abolished SARS-CoV-2 infectivity of the contaminated EVs. Particle detection by electron microscopy and nanoparticle tracking was less affected by UVC and BPL than heat treatment. Western blot analysis of EV markers was not affected by any of these three methods. UVC reduced SARS-CoV-2 spike detectability by quantitative RT-PCR and slightly altered EV-derived ß-actin detection. Fibroblast migration-wound healing activity of the SARS-CoV-2 contaminated-EV isolate was only retained after UVC treatment. In conclusion, specific viral inactivation methods are compatible with specific measures in SARS-CoV-2 contaminated-EV isolates. UVC treatment seems preferable for studying functions of EVs released from SARS-CoV-2 infected cells.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , Virus Inactivation , Extracellular Vesicles/chemistry , Lung , Epithelial Cells/metabolism
19.
Mol Immunol ; 153: 160-169, 2023 01.
Article in English | MEDLINE | ID: covidwho-2150304

ABSTRACT

Cytokine release syndrome, also called cytokine storm, could cause lung tissue damage, acute respiratory distress syndrome (ARDS) and even death during SARS-CoV-2 infection. However, the underlying mechanisms of cytokine storm still remain unknown. Among these cytokines, the function of TNF-α and type I IFNs especially deserved further investigation. Here, we first found that TNF-α and IFN-ß synergistically induced human airway epithelial cells BEAS-2B death. Mechanistically, the combination of TNF-α and IFN-ß led to the activation of caspase-8 and caspase-3, which initiated BEAS-2B apoptosis. The activated caspase-8 and caspase-3 could further induce the cleavage and activation of gasdermin D (GSDMD) and gasdermin E (GSDME), which finally resulted in pro-inflammatory pyroptosis. The knock-down of caspase-8 and caspase-3 could effectively block the activation of GSDMD and GSDME, and then the death of BEAS-2B induced by TNF-α and IFN-ß. In addition, pan-caspase inhibitor Z-VAD-FMK (ZVAD) and necrosulfonamide (NSA) could inhibit BEAS-2B death induced by TNF-α and IFN-ß. Overall, our work revealed one possible mechanism that cytokine storm causes airway epithelial cells (AECs) damage and ARDS. These results indicated that blocking TNF-α and IFN-ß-mediated AECs death may be a potential target to treat related viral infectious diseases, such as COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Apoptosis , Caspase 3/metabolism , Caspase 8/metabolism , Cytokine Release Syndrome , Epithelial Cells/metabolism , Gasdermins , Pyroptosis , SARS-CoV-2/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Interferon-beta
20.
J Extracell Vesicles ; 11(10): e12269, 2022 10.
Article in English | MEDLINE | ID: covidwho-2084354

ABSTRACT

Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection. We show that uninfected HNECs produce mu-sEVs containing SARS-CoV-2 receptor ACE2 and activated protease TMPRSS2. mu-sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an 'open' conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu-sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS-CoV-2 virions prone to entry into target cells using the 'early', TMPRSS2-dependent pathway instead of the 'late', cathepsin-dependent route. These results indicate that prefusion Spike priming by mu-sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS-CoV-2 infection, but instead facilitates it.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , Spike Glycoprotein, Coronavirus/chemistry , Furin , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Proviruses/metabolism , Lipid Bilayers , Virus Internalization , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Cathepsins
SELECTION OF CITATIONS
SEARCH DETAIL